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Abstract

Let us denote a⊕ b=max(a; b) and a⊗ b= a+ b for a; b∈R=R ∪ {−∞} and extend this
pair of operations to matrices and vectors in the same way as in linear algebra. We present an
O(n2(m + n log n)) algorithm for 8nding all essential terms of the max-algebraic characteristic
polynomial of an n × n matrix over R with m 8nite elements. In the cases when all terms
are essential, this algorithm also solves the following problem: Given an n × n matrix A and
k ∈{1; : : : ; n}, 8nd a k×k principal submatrix of A whose assignment problem value is maximum.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

If we replace the operations of addition and multiplication in the real numbers by
taking the maximum of two numbers and by adding two numbers, we obtain the
so-called max-algebra which o>ers an attractive language to deal with problems in
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automata theory, scheduling theory, and discrete event systems, see e.g. the monographs
of Baccelli et al. [2], Cuninghame-Green [5] and Zimmermann [14]. Further important
papers in this direction are of Cuninghame-Green [7], Gaubert [9] and Gondran and
Minoux [12]. Speci8cally, signi8cant e>ort has been devoted to build up a theory
similar to that of linear algebra, for instance [5], to study systems of linear equations,
eigenvalue problems, independence, rank and dimension.
In this paper, we deal with the max-algebraic characteristic polynomial (or,

briePy characteristic maxpolynomial) of a square matrix as de8ned in Cuninghame-
Green [6]. This concept is closely related to that of the max-algebraic characteristic
equation of a matrix (although it should be mentioned that this relation is not as
strong as in linear algebra—see Section 2) which plays a crucial role for ana-
lysing and solving max-algebraic discrete-event dynamic systems, see e.g.
[2,3,10].
To the authors’ knowledge, there is no polynomial method for 8nding all coeS-

cients of a characteristic maxpolynomial. However, because of the absorbing e>ect of
the operation ⊕; some terms of a characteristic maxpolynomial may be omitted with-
out changing it as a function. All the remaining terms are called essential (for an
exact de8nition see below). An O(n5) method for 8nding all essential terms of the
characteristic maxpolynomial of an n × n matrix with entries from Q ∪ {−∞} was
presented in [4]. In that method, the rationality of the matrix entries has explicitly
been exploited.
After the necessary de8nitions, we present 8rst an O(n4) algorithm for 8nding all

essential terms of the characteristic maxpolynomial of a real n × n matrix and then
we show how this method can easily be modi8ed to solve the same problem for
matrices which admit −∞ as an entry. In this case, the complexity can be reduced to
O(n2(m+n log n)), where m is the number of 8nite entries of A. We also discuss an OR
interpretation of the coeScients of a characteristic maxpolynomial and an interpretation
in combinatorial terms. In particular, it will be explained how this method enables us
to readily identify a k × k principal submatrix of an n × n matrix A with maximum
assignment problem value provided that n− k corresponds to an essential term of the
characteristic maxpolynomial of A.

2. De�nitions

Let us denote a ⊕ b = max(a; b) and a ⊗ b = a + b for a; b∈R = R ∪ {−∞}. The
iterated product a⊗a⊗· · ·⊗a in which the letter a appears k-times will be denoted by
a(k). Let us extend the pair of operations (⊕;⊗) to matrices and vectors in the same
way as in conventional linear algebra. That is, if A = (aij); B = (bij) are matrices or
vectors over R of compatible sizes then we write C = A ⊕ B if cij = aij ⊕ bij for all
i; j and C = A⊗ B if cij =

⊕
k aik ⊗ bkj for all i; j.

For any set X and positive integer n, the symbol X n×n will denote the set of all
n× n matrices over X . The letter I stands for a square matrix of an appropriate order
with diagonal entries 0 and o>-diagonal entries −∞.
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A principal submatrix of A= (aij)∈Rn×n is as usual any matrix of the form


ai1i1 ai1i2 : : : ai1ik

ai2i1 ai2i2 : : : ai2ik

...
...

...

aik i1 aik i2 : : : aik ik




;

where 16 i1 ¡ · · ·¡ik 6 n. This matrix will be denoted by A(i1; i2; : : : ; ik). The max-
algebraic permanent of A is de8ned as an analogue of the classical one:

maper(A) =
⊕
�∈Pn

⊗
i∈N

ai;�(i);

where Pn stands for the set of all permutations of the set N = {1; : : : ; n}. In the con-
ventional notation

maper(A) = max
�∈Pn

∑
i∈N

ai;�(i);

which is the optimal value of the assignment problem for the matrix A. There are a
number of eScient solution methods [1] for 8nding maper(A); one of the best known
is the Hungarian method of computational complexity O(n3). The set of all optimal
permutations will be denoted by ap(A), that is,

ap(A) =

{
�∈Pn;maper(A) =

∑
i∈N

ai;�(i)

}
:

A matrix A will be called diagonally dominant if id∈ ap(A). (Note that throughout
the paper id stands for the identity permutation.)
The characteristic maxpolynomial of A has been de8ned in [6] as

�A(x) = maper(A⊕ x ⊗ I) = maper




a11 ⊕ x a12 : : : a1n

a21 a22 ⊕ x : : : a2n

...
...

...

an1 an2 : : : ann ⊕ x




:

It follows immediately from this de8nition that �A(x) is of the form

�0 ⊕ (�1 ⊗ x)⊕ · · · ⊕ (�n−1 ⊗ x(n−1))⊕ x(n)

or briePy
⊕n

i=0 �i ⊗ x(i) where �n = 0 and, by convention, x(0) = 0.

Example 1. If

A=




1 3 2

0 4 1

2 5 0


 ;
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then

�A(x) =maper




1⊕ x 3 2

0 4⊕ x 1

2 5 0⊕ x




= (1⊕ x)⊗ (4⊕ x)⊗ (0⊕ x)⊕ (3⊗ 1⊗ 2)⊕ (2⊗ 0⊗ 5)

⊕(2⊗ (4⊕ x)⊗ 2)⊕
⊕((1⊕ x)⊗ 1⊗ 5)⊕ (3⊗ 0⊗ (0⊕ x))

= x(3) ⊕ 4⊗ x(2) ⊕ 6⊗ x ⊕ 8:

In other words,

�A(x) = max(3x; 4 + 2x; 6 + x; 8):

It has been proved in [6] that for k = 0; 1; : : : ; n− 1

�k =
⊕

B∈Pk (A)
maper(B);

where Pk(A) is the set of all principal submatrices of A of order n− k. Hence, we can
readily compute �0 =maper(A) and �n−1 =max(a11; a22; : : : ; ann), but other coeScients
cannot be found eSciently from this relation as the number of matrices in Pk(A) is
( nk ). Note that �k =−∞ if maper(B) =−∞ for all B∈Pk(A) in which case the term
�k ⊗ x(k) may be omitted. Also, �A(x) may reduce to just x(n); for instance if aij =−∞
for all i; j (i¿ j). We will discuss this and related questions towards the end of the
paper.
The coeScients �k are closely related to the following combinatorial problem:

Best Principal Submatrix Problem (BPSM (k)): Given an n×n matrix A and k6 n;
9nd a k × k principal submatrix of A whose optimal assignment problem value is
maximal.
Obviously, �n−k is the optimal assignment problem value for the principal submatrix

which solves BPSM(k).
Note that to the authors’ knowledge, no polynomial method for solving BPSM(k)

exists although its modi8cation arising after removing the word “principal” is well
known in the literature (see e.g. [8]) and is polynomially solvable. This can also be
seen from the following simple observation: Let Ã be the (2n− k)× (2n− k) matrix
arising from an n×n matrix A by adding n−k rows and n−k columns (k ¡n) so that
the entries in the intersection of these columns and rows are −∞ and the remaining
new entries are zero. If the assignment problem is solved for Ã then every permutation
selects 2n− k entries from Ã. If A is 8nite then any optimal (maximising) permutation
avoids selecting entries from the intersection of the new columns and rows. But as it
selects some other n − k elements from the new rows and n − k di>erent elements
from the new columns, it will select exactly 2n− k − 2(n− k) = k elements from A.
No two of these k elements are from the same row or from the same column and so
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they represent a selection of k independent entries from a k × k submatrix of A. Their
sum is maximum as the only elements taken from outside A are zero. So the best
k× k submatrix problem can readily be solved as the classical assignment problem for
a special matrix of order 2n− k.
The characteristic maxpolynomial of A written using usual algebra is

�A(x) = max(�0; �1 + x; �2 + 2x; : : : ; �n−1 + (n− 1)x; nx):

Hence, �A(x) is the upper envelope of n+1 aSne-linear functions and thus a piecewise
linear and convex function. If for some k ∈{0; : : : ; n} the inequality

�k ⊗ x(k)6
⊕
i �=k

�i ⊗ x(i)

holds for every real x then the term �k ⊗x(k) is called inessential, otherwise it is called
essential. Hence,

�A(x) =
⊕
i �=k

�i ⊗ x(i)

holds for all x∈R if �k ⊗ x(k) is inessential, and therefore all inessential terms may
be ignored if �A(x) is considered as a function. As already mentioned, the aim of this
paper is to present an O(n2(m + n log n)) method for 8nding all essential terms of a
characteristic maxpolynomial for a matrix with m 8nite entries. It then follows that
when all terms are essential then this method solves BPSM(k) for all k = 1; : : : ; n.
There is an operations research interpretation of the coeScients of the characteristic

maxpolynomial which we may call the job rotation problem: Suppose that a company
with n employees requires these workers to swap their jobs (possibly on a regular
basis) in order to avoid exposure to monotonous tasks (for instance manual workers
at an assembly line or ride operators in a theme park). It may also be required that to
maintain stability of service only a certain number of employees, say k (k ¡n), actually
swap their jobs. With each pair old job–new job, a coeScient may be associated
expressing the cost (for instance for an additional training) or the preference of the
worker to this particular change. So the aim may be to select k employees and to
suggest a plan of the job changes between them so that the sum of the coeScients
corresponding to these changes is minimum or maximum. This task leads to 8nding a
k × k principal submatrix of A for which the assignment problem value is minimum
or maximum (the diagonal entries can be set to +∞ or −∞ to avoid an assignment
to the same job).
There are alternative ways of de8ning the characteristic polynomial in max-algebra,

see [13] as well as [11]. The concept of a characteristic equation introduced in [13]
enabled the authors to prove an analogue of the Cayley–Hamilton theorem. Let A be
an n× n matrix. Let us denote by P+

n ; P
−
n the set of even and odd permutations in Pn,

respectively, and p+(A; v)= |{�∈P+
n ;w(A; �)= v}|, p−(A; v)= |{�∈P−

n ;w(A; �)= v}|
where w(A; �) stands for

∑
i∈N ai;�(i). Then A satis8es the following equation called

the max-algebraic characteristic equation of A:

�(n) ⊕ ⊕
k∈J

cn−k ⊗ �(n−k) = cn−1 ⊗ �(n) ⊕ ⊕
k∈J

cn−k ⊗ �(n−k);
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where

cn−k =max


v;

∑
B∈Pk (A)

p+(B; v) �=
∑

B∈Pk (A)

p−(B; v)


 (k = 1; : : : ; n);

J = {j;dn−j ¿ 0}; J = {j;dn−j ¡ 0}
and

dn−k = (−1)k


 ∑

B∈Pk (A)

p+(B; cn−k)−
∑

B∈Pk (A)

p−(B; cn−k)


 (k = 1; : : : ; n):

It follows immediately that �k = ck if the numbers of odd and even permutations for
which the value of the coeScient �k is attained are di>erent.
In [11], a related concept of the characteristic bi-polynomial of A was de8ned. Let

us denote

maper+(A) =
⊕

�∈P+
n

⊗
i∈N

ai;�(i);

maper−(A) =
⊕

�∈P−
n

⊗
i∈N

ai;�(i):

The characteristic bi-polynomial of A is de8ned as (P+(�); P−(�)), where

P+(�) = maper+(A�);

P−(�) = maper−(A�)

and A� stands for the 2n× 2n matrix(
A �⊗ I

I I

)
:

It is not diScult to prove that P+(�) ⊕ P−(�) = �A(x). However, no polynomial al-
gorithm for 8nding P+(�) and P−(�) was given in [11]. An important feature of the
bi-polynomial proved in [11] is that P+(�) = P−(�) is satis8ed by the eigenvalue
of A.

3. Finding the essential terms of a characteristic maxpolynomial

Let a real matrix A = (aij) with 8nite entries be given. Finding the essential terms
of the characteristic maxpolynomial of a matrix A is equivalent to determining the
function z(x); x∈R, where

z(x) := max
’

n∑
i=1

a(x)i’(i) (1)

and

a(x)ij :=

{
max(x; aii) for i = j;

aij for i �= j:
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Thus, z(x) as a function coincides with �A(x). Since �A(x) is piecewise linear and
convex and all its linear pieces are of the form zk(x) := kx+ ck for k = 0; 1; : : : ; n and
certain constants ck , the function z(x) has at most n breakpoints. The main idea of
the method for 8nding all linear pieces of z(x) is based on the fact that it is easy to
evaluate z(x) for any real x as this is simply maper(A⊕ x ⊗ I). By a suitable choice
of O(n) values of x we will be able to identify all linear pieces of z(x).
Let ’∈ ap(A(x))=ap((a(x)ij)) for a particular real value of x (recall that ap(A) de-

notes the set of optimal permutations to the assignment problem for a square matrix A).
We call a diagonal entry a(x)ii of the matrix A(x) active, if x¿ aii and if this diagonal
position is selected by ’; that is ’(i) = i. If there are exactly k active values for a
certain x and permutation ’ then this means that z(x)= kx+ ck = x(k) ⊗ ck , that is, the
value of z(x) is determined by the linear piece with the slope k. Here, ck is the sum
of n− k non-active entries of A(x) selected by ’. No two of these non-active entries
can be from the same row or column and they are all in the submatrix, say B, arising
by removing the rows and columns of all active elements. Since all active elements
are on the diagonal, B is principal and the n− k non-active elements form a feasible
solution to the assignment problem for B. This solution is also optimal by optimality
of ’. This yields the following:

Proposition 3.1. Let x∈R and ’∈Pn. If z(x)=maper(A(x))=
∑n

i=1 a(x)i’(i), i1; i2; : : : ; ik
are indices of all active entries and {j1; : : : ; jn−k}=N−{i1; i2; : : : ; ik} then A(j1; : : : ; jn−k)
is a solution to BPSM (n− k) for A.

There may, of course, be several optimal permutations for the same value of x
selecting di>erent numbers of active elements which means that the value of z(x) may
be equal to the function value of several linear pieces with di>erent slopes at x. We
will pay special attention to this question in Proposition 3.8.

Proposition 3.2. If z(x) = zr(x) = zs(x) for some real number x and some integers
r ¡ s then there are no essential terms with the slope k ∈ (r; s) and x is a breakpoint
of z(x).

Proof. Since zr(x)=�r+rx=z(x)¿ �k+kx for every k, we have zr(x)=�r+rx¿ �k+
kx = zk(x) for every x¡x and k ¿ r, thus z(x)¿ zr(x)¿ zk(x) for every x¡x and
for every k ¿ r.
Similarly, z(x)¿ zs(x)¿ zk(x) for every x¿x and for every k ¡ s. Hence, z(x)¿ zk(x)

for every x and for every integer slope k with r + 16 k6 s− 1.

For x6 ã=min(a11; a22; : : : ; ann), z(x) is given by max’
∑n

i=1 ai’(i)=maper(A). Let
us denote this value by c0. We de8ne the function z0(x) := c0 and then obviously,
z(x) = z0(x) for x6 ã.
Now, let %∗ := maxi; jaij and let E be the matrix whose entries are all equal to 1. For

x¿ %∗ the matrix A(x)− %∗ · E has only non-negative elements on its main diagonal.
All o>-diagonal elements are negative. Therefore we get z(x) = nx for x¿ %∗. We
de8ne zn(x) := nx. Note that for 8nding z(x) there is no need to determine %∗.
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The intersection point of z0(x) with zn(x) is x1 = c0=n. We 8nd z(x1) by solving the
assignment problem max’

∑n
i=1 a(x1)i’(i).

Corollary 3.3. If z(x1) = z0(x1) then z(x) = max(z0(x); zn(x)).

Thus, if z(x1) = z0(x1), we are done and the function z(x) has the form

z(x) =

{
z0(x) for x6 x1;

zn(x) for x¿ x1:
(2)

Otherwise we have found a new linear piece of z(x). Let us call it zk(x) := kx + ck ,
where k is the number of active elements in the corresponding optimal solution and
ck is given by ck := z(x1)− kx1.

Next, we intersect zk(x) with z0(x) and with zn(x). Let x2 and x3, respectively, be
the corresponding intersection points. We generate a list L := (x2; x3). Now we choose
an element from the list, say x2, and determine z(x2). If z(x2) = z0(x2), then x2 is a
breakpoint of z(x). By Proposition 3.2, this means that there are no essential terms
of the characteristic maxpolynomial with slopes between 0 and k. We delete x2 from
our list and process a next point from L. For every point of the list, we either 8nd a
new slope which leads to two new points in the list or we detect that the currently
investigated point is a breakpoint of L. In this case, this point will be deleted and no
new points are generated. If the list L is empty, we are done and we have already
found the correct function z(x). Since every point of the list leads either to a new
slope (and therefore to two new points in L) or it is a breakpoint of the graph of z(x)
in which case this point is deleted from L, the list has no more than O(n) entries. This
means the procedure stops after investigating at most O(n) linear assignment problems.
Thus we have shown:

Theorem 3.4. All essential terms of the characteristic max-polynomial of a real ma-
trix A can be found in O(n4) steps.

Proposition 3.5. If A= (aij) is diagonally dominant then so are all principal subma-
trices of A and all coe=cients of the characteristic maxpolynomial can be found by
the formula

�n−k = ai1i1 + ai2i2 + · · ·+ aik ik ; (k = 0; 1; : : : ; n− 1);

where ai1i1 ¿ ai2i2 ¿ · · ·¿ ainin .

Proof. Let A be a diagonally dominant matrix, B = A(i1; i2; : : : ; ik) for some indices
i1; i2; : : : ; ik and suppose that id �∈ ap(B). Take any �∈ ap(B) and extend � to a permu-
tation ) of the set N by setting )(i) = i for every i �∈ {i1; i2; : : : ; ik}. Then obviously )
is a permutation of a bigger weight than that of id∈Pn; a contradiction. The formula
follows in a straightforward way.

The proof of the following statement is straightforward.
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Proposition 3.6. Let A=(aij); B=(bij)∈Rn×n, r; s∈N , ars6 brs; aij=bij for all i; j (i �=
r; j �= s). If �∈ ap(A) satis9es �(r) = s then �∈ ap(B).

Corollary 3.7. If id∈ ap(A(x)) then id∈ ap(A(x)) for all x¿ x.

Remarks.

1. A diagonal element of A(y) may not be active for some y with y¿x even if it is
active in A(x). For instance, consider the following (4× 4)-matrix A:



0 0 0 29

0 8 20 0

0 0 12 28

29 28 0 16


 :

For x=4, the unique optimal permutation is ’= (1) (2; 3; 4) of value 80, in which
the 8rst diagonal element is active. For y = 20, the unique optimal permutation is
’=(1; 4)(2)(3) of value 98, in which the second and third, but not the 8rst diagonal
element of the matrix are active.

2. If an intersection point x is found by intersecting two linear functions with the
slopes k and k + 1, respectively, this point is immediately deleted from the list L
since it cannot lead to a new essential term (as there is no slope strictly between k
and k + 1).

3. If at an intersection point y, the slope of z(x) changes from k to l with l− k¿ 2,
then an upper bound for an inessential term cr related to the polynomial rx + cr ,
k ¡ r¡l, can be obtained by z(y)− ry. Due to the convexity of the function z(x),
this is the best upper bound on cr which can be obtained by using the values
of z(x).

Taking into account our previous discussion, we arrive at the following algorithm.
The values x which have to be investigated are stored as triples (x; k(l); k(r)) in a list
L. Such a triple tells us that x has been found as the intersection point of two linear
functions with the slopes k(l) and k(r), k(l)¡k(r).

The Algorithm.
Input: A= (aij)∈Rn×n.
Output: All essential terms of the characteristic maxpolynomial of A; in the form

kx + ck .

1. Solve the assignment problem with the cost matrix A.
If the identical permutation id∈ ap(A), stop (A is diagonally dominant and all
terms of the characteristic maxpolynomial are essential with coeScients determined
by the formula of Proposition 3.5).
Otherwise, let c0 = maper(A). De8ne z0(x) := c0.

2. Determine x1 as the intersection point of z0(x) and zn(x) := nx.
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3. Let L := {(x1; 0; n)}.
4. If L = ∅, stop. The function z(x) has been found. Otherwise choose an arbitrary

element (xi; ki(l); ki(r)) from L and remove it from L.
5. If ki(r) = ki(l) + 1, then (see Remark 3 above) go to Step 4. (xi is a breakpoint

of z(x); for x close to xi the function z(x) has slope ki(l) for x¡xi, and ki(r) for
x¿xi.)

6. Find z(xi)=maper(A(xi)). Take an arbitrary optimal permutation to the assignment
problem for the matrix A(xi) and let ki be the number of active elements in this
solution. Set cki := z(xi)− kixi.

7. If id∈ ap(A(xi)) then (see Proposition 3.6) remove all triples (y; :; :) from L with
y¿xi. If as1s1 6 as2s2 6 · · ·6 asnsn then the function z(x) is (after setting k = ki)
given by

z(x) =




kx + ck for ask sk 6 x6 ask+1sk+1 ;

: : : for : : : ;

nx for x¿ asnsn :

Go to Step 4.
Otherwise de8ne zi(x) := kix + cki .

8. Intersect zi(x) with the lines with the slopes ki(l) and ki(r). Let y1 and y2 be the
intersection points, respectively. Add the triples (y1; ki(l); ki) and (y2; ki; ki(r)) to
the list L and go to Step 4.

Example 2. Let the matrix

A :=




0 4 −2 3

2 1 3 −1

−2 −3 1 0

7 −2 8 4




be given. Solving the corresponding assignment problem yields


−4 0 −6 −1

−1 −2 0 −4

−3 −4 0 −1

−1 −10 0 −4


 ;




−3 0∗ −6 0

0∗ −2 0 −3

−2 −4 0 0∗

0 −10 0∗ −3


 :

Thus z0(x) = 14.
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Now, we solve 14=4x and we get x1 = 3:5. By solving the assignment problem for
x1 = 3:5 we get



3:5 4 −2 3

2 3:5 3 −1

−2 −3 3:5 0

7 −2 8 4


 ;




−0:5 0 −6 −1

−1:5 0 −0:5 −4:5

−5:5 −6:5 0 −3:5

−1 −10 0 −4


 ;




0 0 −6 0

−1 0 −0:5 −3:5

−5 −6:5 0 −2:5

−0:5 −10 0 −3


 ;




0 −0:5 −6:5 0∗

−0:5 0∗ −0:5 −3

−4:5 −6:5 0∗ −2

0∗ −10 0 −2:5


 :

Thus z2(3:5)=17 and we get z2(x) := 2x+10. Intersecting this function with z0(x) and
z4(x) yields the two new points x2 := 2 (solving 14 = 2x + 10) and x3 := 5 (solving
2x+10=4x). Investigating x=2 shows that the slope changes at this point from 0 to
2. Thus we have here a breakpoint of z(x). Finding the value z(5) amounts in solving
the assignment problem with the cost matrix



5 4 −2 3

2 5 3 −1

−2 −3 5 0

7 −2 8 5


 :

This assignment problem yields the solution z(5) = 20= z4(5). Thus, no new essential
term has been found and we have z(x) completely determined as

z(x) =




14 for 06 x6 2;

2x + 10 for 26 x6 5;

4x for x¿ 5:
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We say that A= (aij)∈Rn×n is in normal form if

(i) aij6 0 for all i; j = 1; : : : ; n and
(ii) there exists �∈Pn such that ai;�(i) = 0 for all i∈N .

The Hungarian method for solving the assignment problem transforms every matrix,
say, A=(aij)∈Rn×n, with at least one 8nite permutation to a matrix B in normal form
such that ap(A) = ap(B). This enables a very eScient description of the set ap(A)
since obviously �∈ ap(B) if and only if bi;�(i) = 0 for all i∈N . Using the normal
form, we may 8nd an optimal solution to the assignment problem which satis8es
additional requirements or, we may also optimise (with respect to some criterion) over
the set of optimal solutions as it is described in the following statement. Note that in
the assignment problem we may wish to minimise rather than maximise and that the
minimisation problem for a matrix A can simply be converted into a maximisation by
taking the matrix −A instead of A.

Proposition 3.8. Let x be a 9xed real value and let B = (bij) be a normal form of
the matrix A(x). Let C = (cij) be a matrix arising from B by the formula

cij =




0 if bij = 0 and (i; j) is not active;

1 if (i; j) is active;

−∞ otherwise:

Then every �∈ ap(C) [�∈ ap(−C)] is an optimal solution to the assignment problem
for A(x) with maximal [minimal] number of active elements. (Note that bii=0 if (i; i)
is an active entry of A(x).)

Proof. Statement immediately follows from the previous discussion.

If for some value of x there are two or more optimal solutions to the assignment
problem for A(x) with di>erent numbers of active elements, then using Proposition 3.8
we can 8nd an optimal solution with the smallest number and another one with the
biggest number of active elements. This enables us in Step 6 of the Algorithm to 8nd
two new lines (rather than one):
(a) zk(x) := kx+ck , where k is the minimal number of active elements of an optimal

solution to the assignment problem for A(x) and ck is given by ck := z(x)− kx and
(b) zk′(x) := k ′x + ck′ , where k ′ is the maximal number of active elements of

an optimal solution to the assignment problem for A(x) and ck′ is given by ck′ :=
z(x)− k ′x.
In Step 8 of the Algorithm, we then intersect zk(x) with the line having the slope

ki(l) and zk′(x) with the line having slope ki(r).

4. The case of sparse matrices and concluding remarks

If some (but not all) entries of A are −∞, the same algorithm as in the 8nite case
can be used except that the lowest-order 8nite term has to be found since a number
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of the 8rst coeScients �0; �1; : : : of the characteristic maxpolynomial may be −∞. The
following theorems, see [4], are useful here.

Theorem 4.1. �A(x) = x(n) if and only if the digraph D = (N; E) with node set N =
{1; : : : ; n} and arc set E = {(i; j); aij is 9nite} is acyclic.

Theorem 4.2. If �k ⊗ x(k) is the lowest-order 9nite term of the characteristic max-
polynomial of a matrix A then k is the number of active elements in A(x) where x is
any real number satisfying

x¡�− �

and �k = z(x) − kx. Here � = min(0; nAmin); � = max(0; nAmax) and Amax[Amin] is the
biggest [smallest] 9nite entry in A.

These theorems enable to identify the trivial case and to modify the beginning of
the Algorithm by 8nding the intersection of the lowest-order term with x(n).

Moreover, instead of considering the classical assignment problem we rather formu-
late the problem in Step 6 of the algorithm as the maximum weight perfect matching
problem in a bipartite graph (N; N ;E). This graph has an edge (i; j)∈E if and only if
aij is 8nite. It is well known (see e.g. [1]) that the maximum weight perfect matching
problem in a graph with m edges can be solved by a shortest augmenting path method
using Fibonacci heaps in O(n(m + n log n)) time. Since in the worst case O(n) such
maximum weight perfect matching problems must be solved, we get the following
theorem.

Theorem 4.3. Provided that the n×n matrix A has m 9nite entries, all essential terms
of the characteristic maxpolynomial can be found in O(n2(m+ n log n)) time.

We note that BPSM(k) has interesting combinatorial aspects if considered for ma-
trices whose all 8nite entries are zero. To see this, let us denote T = {−∞; 0}. If
A= (aij)∈Tn×n, then �k = 0 or �k =−∞ for every k = 0; 1; : : : ; n− 1. Clearly, �k = 0
if and only if there is a k × k principal submatrix of A with k independent zeros, that
is with k zeros selected by a permutation or, equivalently, k zeros no two of which
are either from the same row or from the same column.
It is easy to see that if A = (aij)∈Tn×n, then B = eA = (eaij) = (bij) is a zero–one

matrix. If �∈Pn, then∏
i∈N

bi;�(i) =
∏
i∈N

eai; �(i) = e
∑

i∈N ai; �(i) :

Since per(B)=
∑

�∈N

∏
i∈N bi;�(i), we have that per(B)¿ 0 is equivalent to (∃�∈Pn)

(∀i∈N )bi;�(i) = 1. But this is equivalent to (∃�∈Pn)(∀i∈N )ai;�(i) = 0.
Thus, the task of 8nding the coeScient �k of the characteristic maxpolynomial of a

square matrix over T is equivalent to the following problem expressed in terms of the
classical permanents:
Given an n× n zero–one matrix A and a positive integer k (k6 n), is there a k × k

principal submatrix B of A with positive permanent?
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